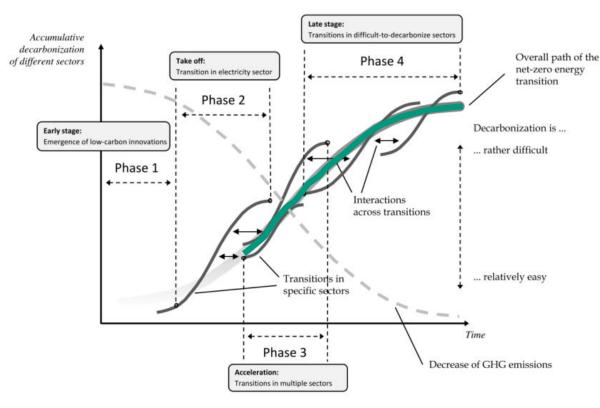
universitätfreiburg


Governance of energy sector integration in Germany

Challenges and Strategies

Workshop: Exploring multi-system phenomena in net-zero transitions

Chair of Sustainability and Transitions Research Sarah Olbrich Oslo, May 2023

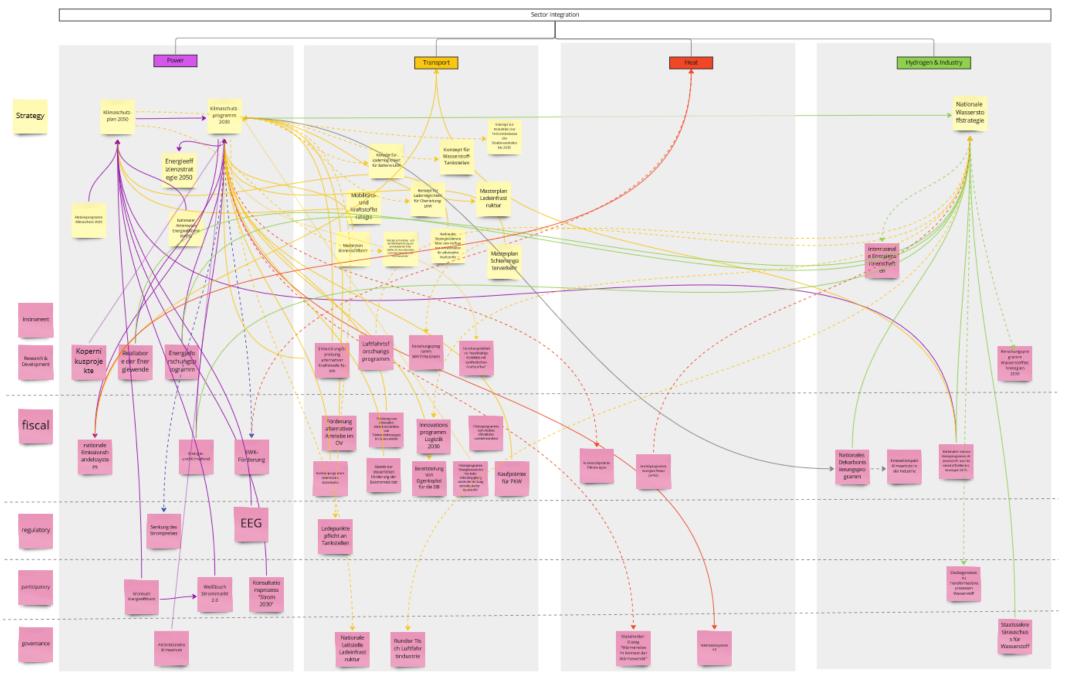
Importance of sector integration for the (German) energy transition

- ESI describes "the connection of electricity, heat, mobility and industrial processes, as well as their infrastructures, with the aim of decarbonization [...]." (Robinius et al. 2017, pp. 2f.)
- ESI as essential part of Phase 3 and Phase 4
- My focus: transition in the energy system

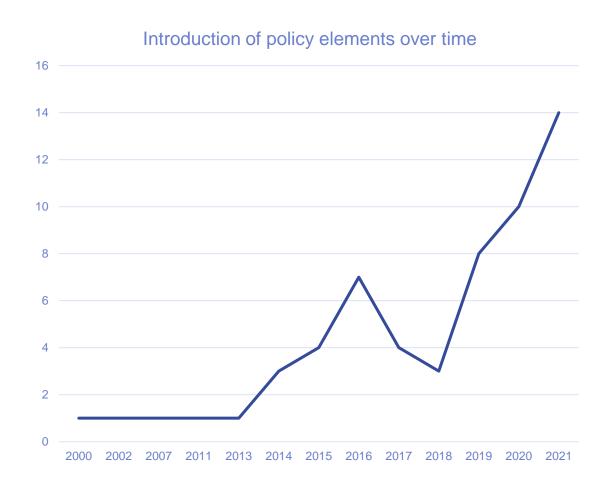
(Markard; Rosenbloom 2023)

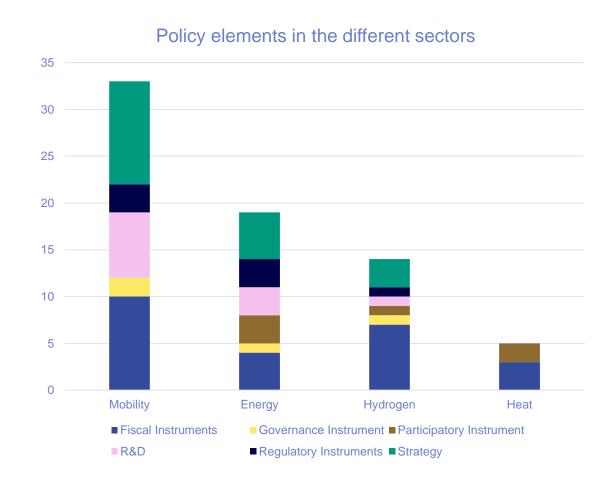
Political strategy of the *Energiewende*

Guiding principles for the German energy transition:


(BMU 2016: 39; BMU 2019: 89; BMWi 2019: 62)

- 1. Efficiency first: reduction of the energy demand
- 2. Direct use of renewable energy sources in all sectors
- 3. Sector coupling through the efficient use of RES-E in the heating, mobility and industry sectors;


Sector coupling through the use of green hydrogen and its secondary products for cases in which direct electrification is not possible (BMWi 2019: 15; BMWi 2020: 2)


Forward-looking policy strategies are considered as necessary for a cost-efficient energy transition and to reduce negative social consequences and economic risks (BMU 2016)

Despite the prominence of ESI in the German energy policy, there is no overarching political strategy for ESI

Difficulties regarding ESI – Need for system building? 1. Competing possible system architectures

Difficulties

- There are multiple possibilities how ESI can be achieved (Naegler et al. 2021; Scheller et al. 2023)
 - Competing technological solutions and possible system architectures
- These competing system architectures differ in their degree of sustainability

How these are addressed in the policy mix

- Qualitative transition pathways
- These are sometimes connected to quantified RES expansion goals
- Modelling to evaluate future demand of technologies, or to evaluate saved GHG emissions

Difficulties regarding ESI – Need for system building? 2. Developing (missing) system elements

Difficulties

- Through ESI, the power sector is to become the backbone of the energy system (Bogdanov et al. 2021), but a stagnation in the power transition can be observed
- New challenges emerge in the power system with an increased share of RES-E (Sinsel et al. 2020)
- Missing elements for a functioning energy system based on RES only (e.g. for decarbonising the aviation sector)

How these are addressed in the policy mix

- R&D programs to develop missing elements
- real world laboratories to test possible system configurations

Difficulties regarding ESI – Need for system building? 3. Managing ESI

Difficulties

- investment cycles can reinforce fossil-fuel lock-ins
- Avoiding new undesired path dependencies

How these are addressed in the policy mix

- Steer investment choices to avoid fossil-fuel lockins
- Use of bridging technologies or postponing decisions when alternatives are not available yet
- Combine old with new system elements (e.g. gas infrastructure with hydrogen)
- Consider multi-system interactions (e.g. impact of e-mobility charging infrastructure on power demand and power grid)

Difficulties regarding ESI – Need for system building? 4. Competing actors interests

Difficulties

 Competing actors interests as different actors favour different transition pathways and possible system architectures (Ohlendorf et al. 2023)

How these are addressed in the policy mix

Stakeholder dialogs

Implications for research

- Taking a multi-sectoral perspective is necessay to account for the challenges of ESI
- With increasing degree of ESI, systemic questions of the transition in the *energy system* arise that are not yet addressed by research
- New difficulties through ESI and multi-sectoral interactions
 - Coordination between the sectors
 - Scarcity of ressources such as RES-E and green hydrogen
- Through which policy mix can such difficulties be adressed?
- Is an overarching strategy for ESI needed/possible/desirable?
 - How can such a strategy look like?
 - What can the sustainability transitions community contribute to such a strategy?

Sources

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU) (2016): Klimaschutzplan 2050 - Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung.

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU) (2019): Klimaschutzprogramm 2030 der Bundesregierung zur Umsetzung des Klimaschutzplans 2050.

Bundesministerium für Wirtschaft und Energie (BMWi) (2019): Energieeffizienzstrategie 2050.

Bundesministerium für Wirtschaft und Energie (BMWi) (2020): Die Nationale Wasserstoffstrategie.

Haley, Brendan (2018): Integrating structural tensions into technological innovation systems analysis: Application to the case of transmission interconnections and renewable electricity in Nova Scotia, Canada. In: Research Policy 47 (6), S. 1147–1160. DOI: 10.1016/j.respol.2018.04.004.

Markard, Jochen; Hoffmann, Volker H. (2016): Analysis of complementarities: Framework and examples from the energy transition. In: Technological Forecasting and Social Change 111, S. 63–75. DOI: 10.1016/j.techfore.2016.06.008.

Markard, Jochen; Rosenbloom, Daniel (2023): Phases of the Net-zero Energy Transition and Strategies to Achieve It. In: Kathleen M. Araújo (Hg.): Routledge handbook of energy transitions. Abingdon, Oxon, New York, NY: Routledge (Routledge environment and sustainability handbooks).

Naegler, Tobias; Sutardhio, Claudia; Weidlich, Anke; Pregger, Thomas (2021): Exploring long-term strategies for the german energy transition - A review of multi-Sector energy scenarios. In: *Renewable and Sustainable Energy Transition* 1, 100010. DOI: 10.1016/j.rset.2021.100010.

Ohlendorf, Nils; Löhr, Meike; Markard, Jochen (2023): Actors in multi-sector transitions - discourse analysis on hydrogen in Germany. In: *Environmental Innovation and Societal Transitions* 47, 100692. DOI: 10.1016/j.eist.2023.100692.

Sources

Robinius, Martin; Otto, Alexander; Heuser, Philipp; Welder, Lara; Syranidis, Konstantinos; Ryberg, David S. et al. (2017): Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling. In: energies 10 (956), S. 1–22. DOI: 10.3390/en10070956.

Scheller, Fabian; Wald, Stefan; Kondziella, Hendrik; Gunkel, Philipp Andreas; Bruckner, Thomas; Keles, Dogan (2023): Future role and economic benefits of hydrogen and synthetic energy carriers in Germany: a review of long-term energy scenarios. In: *Sustainable Energy Technologies and Assessments* 56, 103037. DOI: 10.1016/j.seta.2023.103037.

Sinsel, Simon R.; Riemke, Rhea L.; Hoffmann, Volker H. (2020): Challenges and solution technologies for the integration of variable renewable energy sources—a review. In: *Renewable Energy* 145, p. 2271–2285. DOI: 10.1016/j.renene.2019.06.147.